Homework 3: You are to implement the 8-connected component algorithms as taught in class in Java and C++.

Language: Java and C++

I. Input (args[0]): A binary image.
II. Outputs:
 - outFile1 (args[1]): ** (include in your hard copy)
[bookmark: _GoBack]		 - Pretty print the result of the Pass-1 *and*
the EQAry with proper captions	
	 	- Pretty print the result of the Pass-2 *and*
the EQAry with proper captions
	 	- Print EQAry after manage the EQAry
	 	- Pretty print the result of the Pass-3 *and*
 	the EQAry with proper caption
// a proper caption means the caption should say what the printing is.

- outFile2 (args[2]): ** (include in your hard copy)
				the labelled image file from the result of Pass-3
				with header information for your next project.

 - outFile3 (args[3]): ** (include in your hard copy)
To store the connected component properties.
 	The format is to be as below:
 		- 1st text-line, the header of the input image,
- 2nd text-line is the total number of connected components.
- from 3rd text, use four text-lines per each connected component:
 		- label
		- number of pixels
		- minRow, minCol //the r c coordinated of the upper left corner
		- maxRow, maxCole //the r c coordinated of lower right corner
		For an example:
		45 40 0 8 // image header
		8 		// there are a total of 8 CC in the image
		1 		// CC label 1
		187	 // 187 pixels in CC label 1
		4 9 // upper left corner of the bounding box at row 4 column 9
		35 39 // lower right corner of the bounding box at row 35 column 39
				:
				:

III. Data structure:

	- numRows (int)
	- numCols (int)
	- minVal (int)
	- maxVal (int)
	- newMin (int)
	- newMax (int)
	- newLabel (int)
	- zeroFramedAry (int **) // a 2D array, need to dynamically allocate
//at run time of size numRows + 2 by numCols + 2.

- numNb (int) // number of neighbors to be looked at.
// For 8-connectness is set to 5

- NonZeroNeighbor [numNb] (int)
// 1-D array to store pixel(i, j)’s non-zero neighbors
	
	- EQAry (int *)
// an 1-D array, need to dynamically allocate at run time
		// of size (numRows * numCols) / 4
		// and initialize to EQAry[i] = i.

- Property (you may use 1D struct or class)
	- label
		- numpixels
		- minRow
- minCol
- maxRow
- maxCol

	- CCproperty (*Property) // a array of 1D property struct/class			
		
 - methods:
	- constructor(s) // need to dynamically allocate all arrays;
				and assign values to numRows,..., etc.
	- zeroFramed // zero framing the image as taught in class
	- loadImage // read from input file and write to zeroFramedAry begin at(1,1)

- (int) loadNonZero (whichPass, i, j, extraLabel, minLabel, diffLabel)
// This method load non-zero neighbors of given p(i,j)
// with respect of whichPass (pass1 or pass2).
// extraLabel set to 0 in pass 1, meaning, it does not include p(i,j)
// and set to p(i,j) for pass-2, meaning, it includes p(i,j)
	// during the loading, it determines the minLabel and number of
	// different labels.
		// The method returns the number of non-zero neighbors
		// You should be able to write this method on your own.

	- Connect8CC_Pass1 // as taught in class
			//suggested algorithm steps are given below.

	- Connect8CC_Pass2	// as taught in class
			//suggested algorithm steps are given below.

	

- Connect8CC_Pass3 // In the pass3, you will use the EQAry
// to relabel the components;
			// keep track the newMin newMax for the label image header
			// as well as compute the property of each c.c.
			// and store the cc label i’s properties to CCproperty[i]
			// please note that the bounding box is computed from
		// zeroFramedAry, therefore, the actual
// (minRow, minCol, maxRow, maxCol)
			// need to be subtract by 1 for these four numbers.
			// You should be able to implement this method.

	- updateEQ (...) // Update EQAry of all non-zero neighbors to minLabel
	- manageEQAry (...) // algorithm was given in class.	

	- printCCproperty // print the component properties.
	
	- prettyPrint (outFile) // prettyPrint zeroFramedAry
//without the extra rows and columns to outFile

 	- printEQAry // Print EQAry with index up to newLable, not beyond.

IV. main(...)

step 0: inFile open the input file
 numRows, numCols, minVal, maxVal read the image header
	 dynamically allocate zeroFramedAry and initialize to zero.
	 outFile1, outFile1, outFile3 open

step 1: loadImage(inFile, zeroFramedAry)
// read from input file and write to zeroFramedAry begin at(1,1)	

step 2: Connect8CCPass1 (...) // suggested algorithm steps given below.
	 prettyPrint (outFile1) // the result of pass1
	 printEQAry	 (outFile1)// with index up to newLable with proper caption

step 3: Connect8CCPass2 (...)//suggested algorithm steps given below.
	 prettyPrint (outFile1) // the result of pass2
	 printEQAry (outFile1) // with index up to newLable with caption

step 4: manageEQAry (...)// algorithm was given in class.
 	 printEQAry (outFile1)// with index up to newLable with caption

step 5: 8ConnectCCPass3 (...) // see description in the above.
 prettyPrint (outFile1) // the result of pass3
	 printEQAry (outFile1) // with index up to newLable with caption

step 6: output numRows, numCols, newMin, newMax to outFile2
					
step 7: Output the result of pass3 from zeroFramedAry to outFile2,
begins at (1, 1) and ending at ??

step 8: printCCproperty (...)to outFile 3

step 9: close all files

V. ConnectCCPass1 (...)// suggested algorithm steps.

step 0: newLabel 1

step 1: scan zeroFramedAry L to R & T to B (inside the frame)
if zeroFramedAry (i, j) <= 0
 repeat step 1

step 2: numNz loadNonZero(i, j, 0, minLabel, diffLabel)
case 1: if numNz == 0
			zeroFramedAry (i, j) newLabel
			newLabel ++
			
case 2: if numNz > 0 && diffLabel == 1
				zeroFramedAry (i, j) minLabel

case 3: if numNz > 0 && diffLabel > 1
			zeroFramedAry (i, j) minLabel
			updateEQ (minLabel)

step 3: repeat step 1 to step 2 until all pixels are processed

V. ConnectCCPass2 (...)// suggested algorithm steps.

step 1: scan zeroFramedAry R to L & B to T (inside the frame)
if zeroFramedAry (i, j) <= 0
 repeat step 1

step 2 numNz loadNonZero(i, j, zeroFramedAry (i, j), minLabel, diffLabel)
if numNz > 0 && diffLabel > 1
			zeroFramedAry (i, j) minLabel
			updateEQ (minLabel)

step 3: repeat step 1 to step 2 until all pixels are processed

V. drawBoxes(zeroFramedAry, CCproperty)

step 1: index 1

step 2: minRow CCproperty[i].minRow // need to add 1
 minCol CCproperty[i].minCol // need to add 1
 maxRow CCproperty[i].maxRow // need to add 1
 maxCol CCproperty[i].maxCol // need to add 1
 label CCproperty[i].label

step 3: Assign all pixels on minRow from minCol to maxCol label
 Assign all pixels on maxRow from minCol to maxCol label
 Assign all pixels on minCol from minRow to maxRow label
 Assign all pixels on maxCol from minRow to maxRow label

step 4: index++

step 5: repeat step 2 – step 4 while index is within the number of cc.
